ヒラオカ カズユキ
HIRAOKA Kazuyuki
平岡 和幸 所属 経営学部 データサイエンス学科 職種 教授 |
|
言語種別 | 英語 |
発行・発表の年月 | 2009/03 |
形態種別 | 学術雑誌 |
査読 | 査読あり |
標題 | Parallel reinforcement learning for weighted multi-criteria model with adaptive margin |
執筆形態 | 共著 |
掲載誌名 | Cognitive Neurodynamics |
掲載区分 | 国外 |
巻・号・頁 | 3(1),pp.17-24 |
著者・共著者 | Kazuyuki Hiraoka,Manabu Yoshida,Taketoshi Mishima |
概要 | Reinforcement learning (RL) for a linear family of tasks is described in this paper. The key of our discussion is nonlinearity of the optimal solution even if the task family is linear
we cannot obtain the optimal policy using a naive approach. Although an algorithm exists for calculating the equivalent result to Q-learning for each task simultaneously, it presents the problem of explosion of set sizes. We therefore introduce adaptive margins to overcome this difficulty. © 2008 Springer Science+Business Media B.V. |
DOI | 10.1007/s11571-008-9066-9 |
ISSN | 1871-4080 |