イナモト タダシ
Inamoto,Tadashi
稲本 唯史 所属 法学部 法律学科 職種 教授 |
|
言語種別 | 英語 |
発行・発表の年月 | 1993/02 |
形態種別 | 学術雑誌 |
査読 | 査読あり |
標題 | Quasi-invariant Lagrangians on Lie groups and the method of coadjoint orbits |
執筆形態 | 単著 |
掲載誌名 | Journal of Mathematical physics |
出版社・発行元 | American Institute of physics |
巻・号・頁 | 34(2),pp.649-673 |
概要 | Starting with a two-cocycle globally defined on a Lie group G, the Lagrangian system on G is constructed whose Lagrangian is quasi-invariant under a right translation canonically lifted to the tangent bundle TG. A direct consequence of the quasi-invariance is the appearance of central extension in the Noether symmetry algebra. Then, it is shown that the Kirillov-Kostant symplectic structure on the coadjoint orbit of the Lie group with the central extensions. The generalization to a higher dimensional theory of the Wess-Zumino-Witten-type is also discussed. |